第二层次:膨胀后留下的气泡
如果第一层多重宇宙的概念不太好消化,那么试着想象下一个拥有无穷组第一层多重宇宙的结构:组与组之间相互独立,甚至有着互不相同的时空维度和物理常量。这些组构成了第二层多重宇宙--被称为“无序的持续膨胀”的现代理论预言了它们。
“膨胀”作为大爆炸理论的必然延伸,与该理论的许多其他推论联系紧密。比如我们的宇宙为何如此之大而又如此的规整,光滑和平坦?答案是“空间经历了一个快速的拉伸过程”,它不仅能解释上面的问题,还能阐释宇宙的许多其他属性。【见《膨胀的宇宙》;scientificamerican,may1984;《自我繁殖的膨胀宇宙》byandreilinde,november1994】“膨胀”理论不仅为基本粒子的许多理论所语言,而且被许多观测证实。“无序的持续”指的是在最大尺度上的行为。作为一个整体的空间正在被拉伸并将永远持续下去。然而某些特定区域却停止拉神,由此产生了独立的“气泡”,好像膨胀的烤面包内部的气泡一样。这种气泡有无数个。它们每个都是第一层多重宇宙:在尺寸上无限而且充满因能量场涨落而析出的物质。
对地球来说,另一个气泡在无限遥远之外,远到即使你以光速前进也永远无法到达。因为地球和“另一个气泡”之间的那片空间拉伸的速度远比你行进的速度快。如果另一个气泡中存在另一个你,即便你的后代也永远别想观察到他。基于同样的原因,即空间在加速扩张,观察结果令人沮丧的指出:即便是第一层多重空间中的另一个自己也将看不到了。
第二层多重宇宙与第一层的区别非常之大。各个气泡之间不仅初始条件不同,在表观面貌上也有天壤之别。当今物理学主流观点认为诸如时空的维度、基本粒子的特性还有许许多多所谓的物理常量并非基本物理规律的一部分,而仅是一种被称作“对称性破坏”过程的结果而已。举例言之,理论物理学家认为我们的宇宙曾一度由9个相互平等的维度组成。在宇宙早期历史中,只有其中3个维度参与空间拉神,形成我们现在观察到的三维宇宙。其余6个维度现在观察不到了,因为它们被卷曲在非常微小的尺度中,而且所有的物质都分布在这三个充分拉伸过的维度“表面”上(对9维来说,三维就是一个面而已,或者叫一层“膜”)。
我们生活在3+1维时空之中,对此我们并不特别意外。当描述自然的
偏微分方程是椭圆或者超双曲线方程时,也就是空间或者时间其中之一是0维或
同时多维,对观测者来说,宇宙不可能预测(紫色和绿色部分)。
其余情况下(双曲线方程),若n>3,原子无法稳定存在,n<3,复杂度太低以
至于无法产生自我意识的观测者(没有引力,拓扑结构也成问题)。
由此,我们称空间的对称性被破坏了。量子波的不确定性会导致不同的气泡在膨胀过程中以不同的方式破坏平衡。而结果将会千奇百怪。其中一些可能伸展成4维空间;另一些可能只形成两代夸克而不是我们熟知的三代;还有些它们的宇宙基本物理常数可能比我们的宇宙大。
产生第二层多重宇宙的另一条路是经历宇宙从创生到毁灭的完整周期。科学史上,该理论由一位叫richardc的物理学家于二十世纪30年代提出,最近普林斯顿大学的和剑桥大学的neilturok两位科学家对此作了详尽阐述。steinhardt和turok提出了一个“次级三维膜”的模型,它与我们的空间相当接近,只是在更高维度上有一些平移。【see”beenthere,dohat,”bygeemusser;newsscan,scientificamerican,march2002】该平行宇宙并非真正意义上的独立宇宙,但宇宙作为一个整体--过去、现在和未来--却形成了多重宇宙,并且可以证明它包含的多样性恰似无序膨胀宇宙所包含的。此外,沃特卢的物理学家leesmolin还提出了另一种与第二层多重宇宙有着相似多样性的理论,该理论中宇宙通过黑洞创生和变异而非通过膜物理学。
尽管我们没法与其他第二层多重宇宙之中的事物相互作用,宇宙学家仍能间接地指出它们的存在。因为他们的存在可以用来很好地解释我们宇宙的偶然性。做一个类比:设想你走进一座旅馆,发现了一个房间门牌号码是1967,正是你出生那年。多么巧合呀,在那瞬间你惊叹到。不过你随即反应过来,这完全不算什么巧合。整个旅馆有成百上千的房间,其中有一个和你生日相同很正常。然而你若看见的是另一个与你毫无干系的数字,便不会引发上面的思考。这说明什么问题呢?即便对旅馆一无所知,你也可以用上面的方法来解释很多偶然现象。
让我们举个更切题的例子:考察太阳的质量。太阳的质量决定它的光度(即辐射的总量)。通过基本物理运算我们可知只有当太阳的质量在1.6x10^30~2.4x10^30千克这么个狭窄范围内,地球才可能适合生命居住。否则地球将比金星还热,或者比火星还冷。而太阳的质量正好是2.0x10^30千克。乍看之下,太阳质量是种惊人的幸运与巧合。绝大多数恒星的质量随机分布于10^29~10^32千克的巨大范围内,因此若太阳出生时也随机决定质量的话,落在合适范围的机会将微乎其微。然而有了旅馆的经验,我们便明白这种表面的偶然实为大系统中(在这个例子里是许多太阳系)的必然选择结果(因为我们在这里,所以太阳的质量不得不如此)。这种与观测者密切相关的选择称为“人择原理”。虽然可想而知它引发过多么大的争论,物理学家们还是广泛接收了这一事实:验证基础理论的时候无法忽略这种选择效应。
适用于旅馆房间的原理同样适用于平行宇宙。有趣的是:我们的宇宙在对称性被打破的时候,所有的(至少绝大部分)属性都被“调整”得恰到好处,如果对这些属性作哪怕极其微小的改变,整个宇宙就会面目全非--没有任何生物可以存在于其中。如果质子的质量增加0.2%,它们立即衰变成中子,原子也就无法稳定的存在。如果电磁力减小4%,便不会有氢,也就不会有恒星。如果弱相互作用再弱一些,氢同样无法形成;相反如果它们更强些,那些超新星将无法向星际散播重元素离子。如果宇宙的常数更大一些,它将在形成星系之前就把自己炸得四分五裂。
虽然“宇宙到底被调节得多好”尚无定论,但上面举的每一个例子都暗示着存在许许多多包含每一种可能的调节状态的平行宇宙。【see”exploringouruniverseandothers,”bymartinrees;scientificamerican,december1999】第二层多重宇宙预示着物理学家们不可能测定那些常数的理论值。他们只能计算出期望值的概率分布,在选择效应纳入考虑之后。